If you know of other papers for this bibliography that we may have missed, please e-mail vhc2@psu.edu. Nanothread experimental synthesis or characterization papers are bolded.
- Romi, S., Fanetti, S., Alabarse, F., and Bini, R. Structure–Reactivity Relationship in the High-Pressure Formation of Double-Core Carbon Nanothreads from Azobenzene Crystal. The Journal of Physical Chemistry C (2021).
- Matsuura, B., Huss, S., Zheng, Z., Yuan, S., Wang, T., Chen, B., Badding, J. V., Trauner, D., Elacqua, E., van Duin, A.C.T., Crespi, V. H. and Schmidt-Rohr, K. Perfect and Defective 13C-Furan-Derived Nanothreads from Modest-Pressure Synthesis Analyzed by 13C NMR. Journal of the American Chemical Society (2021).
- Romi, S., Fanetti, S., Alabarse, F., Mio, A. M., and Bini, R. Synthesis of double core chromophore-functionalized nanothreads by compressing azobenzene in a diamond anvil cell. Chemical science, 12(20), 7048-7057 (2021).
- Demingos, P. G., Balzaretti, N. M., & Muniz, A. R. First-principles study of carbon nanothreads derived from five-membered heterocyclic rings: thiophene, furan and pyrrole. Physical Chemistry Chemical Physics (2021).
- Tang, W. S., & Strobel, T. A. Evidence for Functionalized Carbon Nanothreads from π-Stacked, para-Disubstituted Benzenes. The Journal of Physical Chemistry C, 124(45), 25062-25070 (2020).
- Zhao, C., Sprittles, J., & Lockerby, D. Fluctuation-driven dynamics of nano-threads: Rayleigh-Plateau instability and break-up. Bulletin of the American Physical Society (2020).
- Huss, S., Wu, S., Chen, B., Wang, T., Gerthoffer, M. C., Ryan, D. J., Smith, S. E., Crespi, V. H., Badding, J. V. and Elacqua, E. Scalable Synthesis of Crystalline One-Dimensional Carbon Nanothreads Through Modest-Pressure Polymerization of Furan. ACS Nano Article ASAP
- Zhan, H., Zhang, G., Zhuang, X., Timon, R., & Gu, Y. Low interfacial thermal resistance between crossed ultra-thin carbon nanothreads. Carbon, 165, 216-224 (2020).
- Gerthoffer, M. C., Wu, S., Chen, B., Wang, T., Huss, S., Oburn, S. M., Crespi, V. H., Badding, J. V., and Elacqua, E. ‘Sacrificial’supramolecular assembly and pressure-induced polymerization: toward sequence-defined functionalized nanothreads. Chemical Science, 11(42), 11419-11424 (2020).
- Fanetti, S., Santoro, M., Alabarse, F., Enrico, B., & Bini, R. Modulating the H-bond strength by varying the temperature for the high pressure synthesis of nitrogen rich carbon nanothreads. Nanoscale, 12(8), 5233-5242 (2020).
- Huang, H.T., Zhu, L., Ward, M.D., Wang, T., Chen, B., Chaloux, B.L., Wang, Q., Biswas, A., Gray, J.L., Kuei, B., Cody, G.D., Epshteyn, A., Crespi, V.H., Badding, J.V. and Strobel, T.A. Nanoarchitecture through Strained Molecules: Cubane-derived Scaffolds and the Smallest Carbon Nanothreads. Journal of the American Chemical Society, 142 (42), 17944-17955 (2020).
- Zhan, H., Zhang, G., Bell, J. M., Tan, V. B., & Gu, Y. High density mechanical energy storage with carbon nanothread bundle. Nature communications, 11(1), 1-11 (2020).
- Biswas, A., Ward, M.D., Wang, T., Zhu, L., Huang, H.T., Badding, J.V., Crespi, V.H. and Strobel, T.A. Evidence for Orientational Order in Nanothreads Derived from Thiophene. The Journal of Physical Chemistry Letters 10(22), 7164-7171 (2019).
- Juhl, S. J., Wang, T., Vermilyea, B., Li, X., Crespi, V. H., Badding, J. V., Alem, N. Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy Journal of the American Chemical Society, 141(17), 6937-6945 (2019).
- Demingos, P. G., Muniz, A. R. Electronic and Mechanical Properties of Partially Saturated Carbon and Carbon Nitride Nanothreads The Journal of Physical Chemistry C 123, 3886-3891 (2019).
- Xiao, J., Chen, M.-M., Liu, W.-J., He, J., Pan, C.-N., Long, M.-Q. Perfect mechanical and robust electronic properties of new carbon nanothreads: A first principles study Physica E: Low-dimensional Systems and Nanostructures 111, 37-43 (2019).
- Duan, K., Zhang, J., Li, L., Hu, Y., Zhu, W., Wang, X. Diamond nanothreads as novel nanofillers for cross-linked epoxy nanocomposites Composites Science and Technology 174, 84-93 (2019).
- Corminboeuf, C., Gryn'ova, G. Topology-Driven Single-Molecule Conductance of Carbon Nanothreads The Journal of Physical Chemistry Letters, (2019).
- Xue, Y., Chen, Y., Li, Z., Jiang, J.-W., Zhang, Y., Wei, N. Strain engineering for thermal conductivity of diamond nanothread forests Journal of Physics D Applied Physics 52, 085301 (2019).
- Saha, B., Datta, A. Reactive Molecular Dynamics Simulations of Self-Assembly of Polytwistane and Its Application for Nanofibers Journal of Physical Chemistry C 122, 19204-19211 (2018).
- Demingos, P. G., Muniz, A. R. Carbon nanothreads from polycyclic aromatic hydrocarbon molecules Carbon DOI:10.1016/j.carbon.2018.09.022 (2018).
- Silveira, J. F. R. V., Muniz, A. R. Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams Carbon 139, 789-800 (2018).
- Chen, M. M., Xiao, J., Cao, C., Zhang, D., Cui, L. L., Xu, X. M., Long, M. Q. Theoretical prediction electronic properties of Group-IV diamond nanothreads Aip Advances 8, 075107 (2018).
- Wang, T., Duan, P., Xu, E.-S., Vermilyea, B., Chen, B., Li, X., Badding, J. V., Schmidt-Rohr, K., Crespi, V. H. Constraining Carbon Nanothread Structures by Experimental and Calculated Nuclear Magnetic Resonance Spectra Nano Letters, DOI:10.1021/acs.nanolett.8b01736 (2018).
- Zhan, H. F., Gu, Y. T. Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures Chinese Physics B 27, DOI:10.1088/1674-1056/27/3/038103 (2018).
- Duan, P., Li, X., Wang, T., Chen, B., Juhl, S. J., Koeplinger, D., Crespi, V. H., Badding, J. V., Schmidt-Rohr, K. The Chemical Structure of Carbon Nanothreads Analyzed by Advanced Solid-State NMR Journal of the American Chemical Society, DOI:10.1021/jacs.8b03733 (2018).
- Gao, J., Zhang, G., Yakobson, B. I., Zhang, Y.-W. Kinetic Theory for Formation of Diamond Nanothreads with Desired Configurations: Strain-Temperature Controlled Phase Diagram Nanoscale, (2018).
- Li, X., Wang, T., Duan, P., Baldini, M., Huang, H.-T., Chen, B., Juhl, S. J., Koeplinger, D., Crespi, V. H., Schmidt-Rohr, K., Hoffmann, R., Alem, N., Guthrie, M., Zhang, X., Badding, J. V. Carbon Nitride Nanothread Crystals Derived from Pyridine Journal of the American Chemical Society DOI:/10.1021/jacs.7b13247 (2018).
- Zhang, L. W., Ji, W. M., Liew, K. M. Mechanical properties of diamond nanothread reinforced polymer composites Carbon 132, 232-240 (2018).
- Duan, K., Li, Y., Li, L., Hu, Y., Wang, X. Diamond nanothreads based resonators: ultrahigh sensitivity and low dissipation Nanoscale, (2018).
- Marutheeswaran, S., Jemmis, E. D. Adamantane-Derived Carbon Nanothreads: High Structural Stability and Mechanical Strength The Journal of Physical Chemistry C, (2018).
- Samuele, F., Margherita, C., Kamil, D., Marcelo Medre, N., Roberto, B. The role of H-bond in the high-pressure chemistry of model molecules Journal of Physics: Condensed Matter, (2018).
- Nobrega, M. M., Teixeira-Neto, E., Cairns, A. B., Temperini, M. L. A., Bini, R. One-dimensional diamondoid polyaniline-like nanothreads from compressed crystal aniline Chemical Science 9, 254-260 (2018).
- Wu, W., Tai, B., Guan, S., Yang, S. A., Zhang, G. Hybrid Structures and Strain-Tunable Electronic Properties of Carbon Nanothreads The Journal of Physical Chemistry C, (2018).
- Chen, B., Wang, T., Crespi, V. H., Li, X., Badding, J., Hoffmann, R. All the Ways To Have Substituted Nanothreads Journal of Chemical Theory and Computation 14, 1131-1140 (2018).
- Podlivaev, A.I., Openov, L. A., Effect of hydrogen desorption on the mechanical properties and electron structure of diamond-like carbon nanothreads, Semiconductors, 51 636-639, (2017).
- Chen, B., Hoffmann, R, Cammi, R. The Effect of Pressure on Organic Reactions in Fluids—a New Theoretical Perspective, Angewante Chemie, 56, 11126-11142 (2017).
- Zhan, H., Gu, Y., Thermal Conductivity of Diamond Nanothread in Thermal Transport in Carbon-Based Nanomaterials, Elsevier (2017).
- Feng, C., Xu, J., Zhang, Z., & Wu, J. Morphology- and dehydrogenation-controlled mechanical properties in diamond nanothreads, Carbon, 124, 9–22 (2017).
- Li, X., Baldini, M., Wang, T., Chen, B., Xu, E.-S., Vermilyea, B., Crespi, V., Hoffmann, R., Molaison, J., Tulk, C., Guthrie, M., Sinogeikin, S., Badding, J.V., Mechanochemical Synthesis of Carbon Nanothread Single Crystals, JACS, 139, 16343-16349 (2017).
- Podlivaev, A. I., Openov, L. A. Thermal stability of hydrogenated small-diameter carbon nanotubes Semiconductors 51, 213-216 (2017).
- Zhan, H., Zhang, G., Tan, V.B.C., Gu, Y. The best features of diamond nanothread for nanofibre applications, Nature Comm. 8, 14863 (2017)
- Cai, W., Dunuwille, M., He, J., Taylor, T.V., Hinton, J.K., MacLean, M.C., Molaison, J.J., dos Santos, A.M., Sinogeikin, S., Deemyad, S., Deuterium Isotope Effects in Polymerization of Benzene under Pressure, Journal of Physical Chemistry Letters, 8, 1856-1864 (2017)
- Saha, B., Pratik, S, Datta, A., Coexistence of Normal and Auxetic Behavior in a Thermally and Chemically Stable sp3 Nanothread: Poly[5]asterane, Chem. Eur. J. 23, 1–8 (2017)
- Silveira, J., Muniz, A., Functionalized Diamond Nanothreads from Benzene Derivatives, Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/C6CP08655A.
- Juhl, S., Li, X., Badding, J.V., Alem, N., Monochromated Low-Dose Aberration-Corrected Transmission Electron Microscopy of Diamondoid Carbon Nanothreads, Microscopy and Microanalysis, 22, 1840 (2016).
- L. A. Openov, A. I. Podlivaev "Thermal stability of diamond-like carbon nanothreads" JETP Letters 104, 193–196 (2016).
- Contreras, M. L., Villarroel, I., Rozas, R. Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubesStructural Chemistry 27, 1479-1490 (2016).
- Lasbury M.E. (2017) The Replicator: Maybe You Can Have Everything. In: The Realization of Star Trek Technologies. Springer, Chem (2016.)
- J.F.R.V. Silveira, A.R. Muniz"First-principles calculation of the mechanical properties of diamond nanothreads" Carbon 113 260e265 (2017).
- T. Zhu, E. Ertekin, "Generalized Debye-Peierls/Allen-Feldman model for the lattice thermal conductivity of low-dimensional and disordered materials" Physical Review B, 93, 155414 (2016).
- T. Zhu, E. Ertekin, "Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene" Nano Letters DOI:10.1021/acs.nanolett.6b00557
- H. Zhan, G. Zhang, V.B.C. Tan, Y. Cheng, J.M. Bell, Y.-W. Zhang, & Y. Gu, "From Brittle to Ductile: A Structure Dependent Ductility of Diamond Nanothread". Nanoscale 8 (21), 11177-11184 (2016) http://dx.doi.org/10.1039/C6NR02414A.
- H. Zhan, G. Zhang, V.B.C. Tan, Y. Cheng, J.M. Bell, Y.-W. Zhang, & Y. Gu, "Diamond Nanothread as a New Reinforcement for Nanocomposites". Advanced Functional Materials, n/a-n/a (2016) http://dx.doi.org/10.1002/adfm.201600119.
- H.F. Zhan, G. Zhang, Y.Y. Zhang, V.B.C. Tan, J.M. Bell, & Y.T. Gu, "Thermal Conductivity of a New Carbon Nanotube Analog: The Diamond Nanothread". Carbon 98, 232-237 (2016) http://dx.doi.org/10.1016/j.carbon.2015.11.012.
- H. Zhan, G. Zhang, J.M. Bell, & Y. Gu, "The Morphology and Temperature Dependent Tensile Properties of Diamond Nanothreads". Carbon (2016) http://dx.doi.org/10.1016/j.carbon.2016.06.006.
- J.V. Badding & V.H. Crespi, "Synthesizing Carbon Nanothreads from Benzene". SPIE Newsroom, 10.1117/1112.1201501.1005713 (2015) http://dx.doi.org/10.1117/2.1201501.005713.
- Contreras, M. L., Villarroel, I., Rozas, R. How structural parameters affect the reactivity of saturated and non-saturated nitrogen-doped single-walled carbon nanotubes of different chiralities: a density functional theory approach Structural Chemistry 26, 761-771 (2015).
- B. Chen, R. Hoffmann, N.W. Ashcroft, J. Badding, E.S. Xu, & V. Crespi, "Linearly Polymerized Benzene Arrays as Intermediates, Tracing Pathways to Carbon Nanothreads". J Am Chem Soc 137 (45), 14373-14386 (2015) http://dx.doi.org/10.1021/jacs.5b09053.
- T.C. Fitzgibbons, M. Guthrie, E.S. Xu, V.H. Crespi, S.K. Davidowski, G.D. Cody, N. Alem, & J.V. Badding, "Benzene-Derived Carbon Nanothreads". Nat Mater 14 (1), 43-47 (2015) http://dx.doi.org/10.1038/Nmat4088.
- R.E. Roman, K. Kwan, & S.W. Cranford, "Mechanical Properties and Defect Sensitivity of Diamond Nanothreads". Nano Lett 15 (3), 1585-1590 (2015) http://dx.doi.org/10.1021/nl5041012.
- E.S. Xu, P.E. Lammert, & V.H. Crespi, "Systematic Enumeration of Sp(3) Nanothreads". Nano Lett 15 (8), 5124-5130 (2015) http://dx.doi.org/10.1021/acs.nanolett.5b01343.
- B. Maryasin, M. Olbrich, D. Trauner, & C. Ochsenfeld, "Calculated Nuclear Magnetic Resonance Spectra of Polytwistane and Related Hydrocarbon Nanorods". J Chem Theory Comput 11 (3), 1020-1026 (2015) http://dx.doi.org/10.1021/ct5011505.
- M. Olbrich, P. Mayer, & D. Trauner, "Synthetic Studies toward Polytwistane Hydrocarbon Nanorods". J Org Chem 80 (4), 2042-2055 (2015) http://dx.doi.org/10.1021/jo502618g.
- S.R. Barua, H. Quanz, M. Olbrich, P.R. Schreiner, D. Trauner, & W.D. Allen, "Polytwistane". Chem-Eur J 20 (6), 1638-1645 (2014) http://dx.doi.org/10.1002/chem.201303081.
- Contreras, M. L., Cortes-Arriagada, D., Villarroel, I., Alvarez, J., Rozas, R. Evaluating the hydrogen chemisorption and physisorption energies for nitrogen-containing single-walled carbon nanotubes with different chiralities: a density functional theory study Structural Chemistry 25, 1045-1056 (2014).
- M. Olbrich, P. Mayer, & D. Trauner, "A Step toward Polytwistane: Synthesis and Characterization of C-2-Symmetric Tritwistane". Org Biomol Chem12 (1), 108-112 (2014) http://dx.doi.org/10.1039/c3ob42152j.
- D. Wen, R. Hoffmann, & N.W. Ashcroft, "Benzene under High Pressure: A Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase". J Am Chem Soc 133 (23), 9023-9035 (2011) http://dx.doi.org/10.1021/ja201786y.
- Contreras, M. L., Rozas, R. Nitrogen-Containing Carbon Nanotubes - A Theorectical Approach in Carbon Nanotubes - From Research to Applications; Intech, 2011.
- Contreras, M. L., Avila, D., Alvarez, J., Rozas, R. Exploring the structural and electronic properties of nitrogen-containing exohydrogenated carbon nanotubes: a quantum chemistry study Structural Chemistry 21, 573-581 (2010).
- D. Stojkovic, P.H. Zhang, & V.H. Crespi, "Smallest Nanotube: Breaking the Symmetry of Sp(3) Bonds in Tubular Geometries". Phys. Rev. Lett. 87 (12) (2001) http://dx.doi.org/10.1103/PhysRevLett.87.125502.