If you know of other papers for this bibliography that we may have missed, please e-mail vhc2@psu.edu. Nanothread experimental synthesis or characterization papers are bolded.

 

  1. Romi, S., Fanetti, S., Alabarse, F., and Bini, R. Structure–Reactivity Relationship in the High-Pressure Formation of Double-Core Carbon Nanothreads from Azobenzene Crystal. The Journal of Physical Chemistry C (2021).
  2. Matsuura, B., Huss, S., Zheng, Z., Yuan, S., Wang, T.,  Chen, B., Badding, J. V.,  Trauner, D., Elacqua, E.,  van Duin, A.C.T.,  Crespi, V. H. and Schmidt-Rohr, K. Perfect and Defective 13C-Furan-Derived Nanothreads from Modest-Pressure Synthesis Analyzed by 13C NMR. Journal of the American Chemical Society (2021).
  3. Romi, S., Fanetti, S., Alabarse, F., Mio, A. M., and Bini, R. Synthesis of double core chromophore-functionalized nanothreads by compressing azobenzene in a diamond anvil cell. Chemical science12(20), 7048-7057 (2021).
  4. Demingos, P. G., Balzaretti, N. M., & Muniz, A. R. First-principles study of carbon nanothreads derived from five-membered heterocyclic rings: thiophene, furan and pyrrole. Physical Chemistry Chemical Physics (2021).
  5. Tang, W. S., & Strobel, T. A. Evidence for Functionalized Carbon Nanothreads from π-Stacked, para-Disubstituted Benzenes. The Journal of Physical Chemistry C124(45), 25062-25070 (2020).
  6. Zhao, C., Sprittles, J., & Lockerby, D. Fluctuation-driven dynamics of nano-threads: Rayleigh-Plateau instability and break-up. Bulletin of the American Physical Society (2020).
  7. Huss, S., Wu, S., Chen, B., Wang, T., Gerthoffer, M. C., Ryan, D. J., Smith, S. E., Crespi, V. H., Badding, J. V. and Elacqua, E. Scalable Synthesis of Crystalline One-Dimensional Carbon Nanothreads Through Modest-Pressure Polymerization of Furan. ACS Nano Article ASAP
  8. Zhan, H., Zhang, G., Zhuang, X., Timon, R., & Gu, Y. Low interfacial thermal resistance between crossed ultra-thin carbon nanothreads. Carbon165, 216-224 (2020).
  9. Gerthoffer, M. C., Wu, S., Chen, B., Wang, T., Huss, S., Oburn, S. M., Crespi, V. H., Badding, J. V., and Elacqua, E. ‘Sacrificial’supramolecular assembly and pressure-induced polymerization: toward sequence-defined functionalized nanothreads. Chemical Science, 11(42), 11419-11424 (2020).
  10. Fanetti, S., Santoro, M., Alabarse, F., Enrico, B., & Bini, R. Modulating the H-bond strength by varying the temperature for the high pressure synthesis of nitrogen rich carbon nanothreads. Nanoscale12(8), 5233-5242 (2020).
  11. Huang, H.T., Zhu, L., Ward, M.D., Wang, T., Chen, B., Chaloux, B.L., Wang, Q., Biswas, A., Gray, J.L., Kuei, B., Cody, G.D., Epshteyn, A., Crespi, V.H., Badding, J.V. and Strobel, T.A. Nanoarchitecture through Strained Molecules: Cubane-derived Scaffolds and the Smallest Carbon Nanothreads. Journal of the American Chemical Society, 142 (42), 17944-17955 (2020).
  12. Zhan, H., Zhang, G., Bell, J. M., Tan, V. B., & Gu, Y. High density mechanical energy storage with carbon nanothread bundle. Nature communications11(1), 1-11 (2020).
  13. Biswas, A., Ward, M.D., Wang, T., Zhu, L., Huang, H.T., Badding, J.V., Crespi, V.H. and Strobel, T.A. Evidence for Orientational Order in Nanothreads Derived from Thiophene. The Journal of Physical Chemistry Letters 10(22), 7164-7171 (2019).
  14. Juhl, S. J., Wang, T., Vermilyea, B., Li, X., Crespi, V. H., Badding, J. V., Alem, N. Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy Journal of the American Chemical Society, 141(17), 6937-6945 (2019).
  15. Demingos, P. G., Muniz, A. R. Electronic and Mechanical Properties of Partially Saturated Carbon and Carbon Nitride Nanothreads The Journal of Physical Chemistry C 123, 3886-3891 (2019).
  16. Xiao, J., Chen, M.-M., Liu, W.-J., He, J., Pan, C.-N., Long, M.-Q. Perfect mechanical and robust electronic properties of new carbon nanothreads: A first principles study Physica E: Low-dimensional Systems and Nanostructures 111, 37-43 (2019).
  17. Duan, K., Zhang, J., Li, L., Hu, Y., Zhu, W., Wang, X. Diamond nanothreads as novel nanofillers for cross-linked epoxy nanocomposites Composites Science and Technology 174, 84-93 (2019).
  18. Corminboeuf, C., Gryn'ova, G. Topology-Driven Single-Molecule Conductance of Carbon Nanothreads The Journal of Physical Chemistry Letters, (2019).
  19. Xue, Y., Chen, Y., Li, Z., Jiang, J.-W., Zhang, Y., Wei, N. Strain engineering for thermal conductivity of diamond nanothread forests Journal of Physics D Applied Physics 52, 085301 (2019).
  20. Saha, B., Datta, A. Reactive Molecular Dynamics Simulations of Self-Assembly of Polytwistane and Its Application for Nanofibers Journal of Physical Chemistry C 122, 19204-19211 (2018).
  21. Demingos, P. G., Muniz, A. R. Carbon nanothreads from polycyclic aromatic hydrocarbon molecules Carbon DOI:10.1016/j.carbon.2018.09.022 (2018)
  22. Silveira, J. F. R. V., Muniz, A. R. Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams Carbon 139, 789-800 (2018)
  23. Chen, M. M., Xiao, J., Cao, C., Zhang, D., Cui, L. L., Xu, X. M., Long, M. Q. Theoretical prediction electronic properties of Group-IV diamond nanothreads Aip Advances 8, 075107 (2018)
  24. Wang, T., Duan, P., Xu, E.-S., Vermilyea, B., Chen, B., Li, X., Badding, J. V., Schmidt-Rohr, K., Crespi, V. H. Constraining Carbon Nanothread Structures by Experimental and Calculated Nuclear Magnetic Resonance Spectra Nano Letters, DOI:10.1021/acs.nanolett.8b01736 (2018).
  25. Zhan, H. F., Gu, Y. T. Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures Chinese Physics B 27, DOI:10.1088/1674-1056/27/3/038103 (2018)
  26. Duan, P., Li, X., Wang, T., Chen, B., Juhl, S. J., Koeplinger, D., Crespi, V. H., Badding, J. V., Schmidt-Rohr, K. The Chemical Structure of Carbon Nanothreads Analyzed by Advanced Solid-State NMR Journal of the American Chemical Society, DOI:10.1021/jacs.8b03733 (2018).
  27. Gao, J., Zhang, G., Yakobson, B. I., Zhang, Y.-W. Kinetic Theory for Formation of Diamond Nanothreads with Desired Configurations: Strain-Temperature Controlled Phase Diagram Nanoscale, (2018)
  28. Li, X., Wang, T., Duan, P., Baldini, M., Huang, H.-T., Chen, B., Juhl, S. J., Koeplinger, D., Crespi, V. H., Schmidt-Rohr, K., Hoffmann, R., Alem, N., Guthrie, M., Zhang, X., Badding, J. V. Carbon Nitride Nanothread Crystals Derived from Pyridine Journal of the American Chemical Society DOI:/10.1021/jacs.7b13247 (2018).
  29. Zhang, L. W., Ji, W. M., Liew, K. M. Mechanical properties of diamond nanothread reinforced polymer composites Carbon 132, 232-240 (2018)
  30. Duan, K., Li, Y., Li, L., Hu, Y., Wang, X. Diamond nanothreads based resonators: ultrahigh sensitivity and low dissipation Nanoscale, (2018)
  31. Marutheeswaran, S., Jemmis, E. D. Adamantane-Derived Carbon Nanothreads: High Structural Stability and Mechanical Strength The Journal of Physical Chemistry C, (2018)
  32. Samuele, F., Margherita, C., Kamil, D., Marcelo Medre, N., Roberto, B. The role of H-bond in the high-pressure chemistry of model molecules Journal of Physics: Condensed Matter, (2018)
  33. Nobrega, M. M., Teixeira-Neto, E., Cairns, A. B., Temperini, M. L. A., Bini, R. One-dimensional diamondoid polyaniline-like nanothreads from compressed crystal aniline Chemical Science 9, 254-260 (2018)
  34. Wu, W., Tai, B., Guan, S., Yang, S. A., Zhang, G. Hybrid Structures and Strain-Tunable Electronic Properties of Carbon Nanothreads The Journal of Physical Chemistry C, (2018)
  35. Chen, B., Wang, T., Crespi, V. H., Li, X., Badding, J., Hoffmann, R. All the Ways To Have Substituted Nanothreads Journal of Chemical Theory and Computation 14, 1131-1140 (2018)
  36. Podlivaev, A.I., Openov, L. A., Effect of hydrogen desorption on the mechanical properties and electron structure of diamond-like carbon nanothreads, Semiconductors, 51 636-639, (2017).
  37. Chen, B., Hoffmann, R, Cammi, R. The Effect of Pressure on Organic Reactions in Fluids—a New Theoretical Perspective, Angewante Chemie, 56, 11126-11142 (2017).
  38. Zhan, H., Gu, Y., Thermal Conductivity of Diamond Nanothread in Thermal Transport in Carbon-Based Nanomaterials, Elsevier (2017).
  39. Feng, C., Xu, J., Zhang, Z., & Wu, J. Morphology- and dehydrogenation-controlled mechanical properties in diamond nanothreads, Carbon, 124, 9–22 (2017).
  40. Li, X., Baldini, M., Wang, T., Chen, B., Xu, E.-S., Vermilyea, B., Crespi, V., Hoffmann, R., Molaison, J., Tulk, C., Guthrie, M., Sinogeikin, S., Badding, J.V., Mechanochemical Synthesis of Carbon Nanothread Single Crystals, JACS, 139, 16343-16349 (2017).
  41. Podlivaev, A. I., Openov, L. A. Thermal stability of hydrogenated small-diameter carbon nanotubes Semiconductors 51, 213-216 (2017)
  42. Zhan, H., Zhang, G., Tan, V.B.C., Gu, Y. The best features of diamond nanothread for nanofibre applications, Nature Comm. 8, 14863 (2017)
  43. Cai, W., Dunuwille, M., He, J., Taylor, T.V., Hinton, J.K., MacLean, M.C., Molaison, J.J., dos Santos, A.M., Sinogeikin, S., Deemyad, S., Deuterium Isotope Effects in Polymerization of Benzene under Pressure, Journal of Physical Chemistry Letters, 8, 1856-1864 (2017)
  44. Saha, B., Pratik, S, Datta, A., Coexistence of Normal and Auxetic Behavior in a Thermally and Chemically Stable sp3 Nanothread: Poly[5]asterane, Chem. Eur. J. 23, 1–8 (2017)
  45. Silveira, J., Muniz, A., Functionalized Diamond Nanothreads from Benzene Derivatives, Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/C6CP08655A.
  46. Juhl, S., Li, X., Badding, J.V., Alem, N., Monochromated Low-Dose Aberration-Corrected Transmission Electron Microscopy of Diamondoid Carbon Nanothreads, Microscopy and Microanalysis, 22, 1840 (2016). 
  47. L. A. Openov, A. I. Podlivaev "Thermal stability of diamond-like carbon nanothreads" JETP Letters 104, 193–196 (2016).
  48. Contreras, M. L., Villarroel, I., Rozas, R. Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubesStructural Chemistry 27, 1479-1490 (2016)
  49. Lasbury M.E. (2017) The Replicator: Maybe You Can Have Everything. In: The Realization of Star Trek Technologies. Springer, Chem (2016.)
  50. J.F.R.V. Silveira, A.R. Muniz"First-principles calculation of the mechanical properties of diamond nanothreads" Carbon 113 260e265 (2017).
  51. T. Zhu, E. Ertekin, "Generalized Debye-Peierls/Allen-Feldman model for the lattice thermal conductivity of low-dimensional and disordered materials" Physical Review B, 93, 155414 (2016). 
  52. T. Zhu, E. Ertekin, "Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene" Nano Letters DOI:10.1021/acs.nanolett.6b00557
  53. H. Zhan, G. Zhang, V.B.C. Tan, Y. Cheng, J.M. Bell, Y.-W. Zhang, & Y. Gu, "From Brittle to Ductile: A Structure Dependent Ductility of Diamond Nanothread". Nanoscale 8 (21), 11177-11184 (2016) http://dx.doi.org/10.1039/C6NR02414A.
  54. H. Zhan, G. Zhang, V.B.C. Tan, Y. Cheng, J.M. Bell, Y.-W. Zhang, & Y. Gu, "Diamond Nanothread as a New Reinforcement for Nanocomposites". Advanced Functional Materials, n/a-n/a (2016) http://dx.doi.org/10.1002/adfm.201600119.
  55. H.F. Zhan, G. Zhang, Y.Y. Zhang, V.B.C. Tan, J.M. Bell, & Y.T. Gu, "Thermal Conductivity of a New Carbon Nanotube Analog: The Diamond Nanothread". Carbon 98, 232-237 (2016) http://dx.doi.org/10.1016/j.carbon.2015.11.012.
  56. H. Zhan, G. Zhang, J.M. Bell, & Y. Gu, "The Morphology and Temperature Dependent Tensile Properties of Diamond Nanothreads". Carbon (2016) http://dx.doi.org/10.1016/j.carbon.2016.06.006.
  57. J.V. Badding & V.H. Crespi, "Synthesizing Carbon Nanothreads from Benzene". SPIE Newsroom, 10.1117/1112.1201501.1005713 (2015) http://dx.doi.org/10.1117/2.1201501.005713.
  58. Contreras, M. L., Villarroel, I., Rozas, R. How structural parameters affect the reactivity of saturated and non-saturated nitrogen-doped single-walled carbon nanotubes of different chiralities: a density functional theory approach Structural Chemistry 26, 761-771 (2015)
  59. B. Chen, R. Hoffmann, N.W. Ashcroft, J. Badding, E.S. Xu, & V. Crespi, "Linearly Polymerized Benzene Arrays as Intermediates, Tracing Pathways to Carbon Nanothreads". J Am Chem Soc 137 (45), 14373-14386 (2015) http://dx.doi.org/10.1021/jacs.5b09053.
  60. T.C. Fitzgibbons, M. Guthrie, E.S. Xu, V.H. Crespi, S.K. Davidowski, G.D. Cody, N. Alem, & J.V. Badding, "Benzene-Derived Carbon Nanothreads". Nat Mater 14 (1), 43-47 (2015) http://dx.doi.org/10.1038/Nmat4088.
  61. R.E. Roman, K. Kwan, & S.W. Cranford, "Mechanical Properties and Defect Sensitivity of Diamond Nanothreads". Nano Lett 15 (3), 1585-1590 (2015) http://dx.doi.org/10.1021/nl5041012.
  62. E.S. Xu, P.E. Lammert, & V.H. Crespi, "Systematic Enumeration of Sp(3) Nanothreads". Nano Lett 15 (8), 5124-5130 (2015) http://dx.doi.org/10.1021/acs.nanolett.5b01343.
  63. B. Maryasin, M. Olbrich, D. Trauner, & C. Ochsenfeld, "Calculated Nuclear Magnetic Resonance Spectra of Polytwistane and Related Hydrocarbon Nanorods". J Chem Theory Comput 11 (3), 1020-1026 (2015) http://dx.doi.org/10.1021/ct5011505.
  64. M. Olbrich, P. Mayer, & D. Trauner, "Synthetic Studies toward Polytwistane Hydrocarbon Nanorods". J Org Chem 80 (4), 2042-2055 (2015) http://dx.doi.org/10.1021/jo502618g.
  65. S.R. Barua, H. Quanz, M. Olbrich, P.R. Schreiner, D. Trauner, & W.D. Allen, "Polytwistane". Chem-Eur J 20 (6), 1638-1645 (2014) http://dx.doi.org/10.1002/chem.201303081.
  66. Contreras, M. L., Cortes-Arriagada, D., Villarroel, I., Alvarez, J., Rozas, R. Evaluating the hydrogen chemisorption and physisorption energies for nitrogen-containing single-walled carbon nanotubes with different chiralities: a density functional theory study Structural Chemistry 25, 1045-1056 (2014)
  67. M. Olbrich, P. Mayer, & D. Trauner, "A Step toward Polytwistane: Synthesis and Characterization of C-2-Symmetric Tritwistane". Org Biomol Chem12 (1), 108-112 (2014) http://dx.doi.org/10.1039/c3ob42152j.
  68. D. Wen, R. Hoffmann, & N.W. Ashcroft, "Benzene under High Pressure: A Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase". J Am Chem Soc 133 (23), 9023-9035 (2011) http://dx.doi.org/10.1021/ja201786y.
  69. Contreras, M. L., Rozas, R. Nitrogen-Containing Carbon Nanotubes - A Theorectical Approach in Carbon Nanotubes - From Research to Applications; Intech, 2011.
  70. Contreras, M. L., Avila, D., Alvarez, J., Rozas, R. Exploring the structural and electronic properties of nitrogen-containing exohydrogenated carbon nanotubes: a quantum chemistry study Structural Chemistry 21, 573-581 (2010)
  71. D. Stojkovic, P.H. Zhang, & V.H. Crespi, "Smallest Nanotube: Breaking the Symmetry of Sp(3) Bonds in Tubular Geometries". Phys. Rev. Lett. 87 (12) (2001) http://dx.doi.org/10.1103/PhysRevLett.87.125502.