Nanothread Bibliography

If you know of other papers for this bibliography that we may have missed, please e-mail jbadding@chem.psu.edu. Nanothread experimental synthesis or characterization papers are bolded.
 

  1. Demingos, P. G., Muniz, A. R. Carbon nanothreads from polycyclic aromatic hydrocarbon molecules Carbon DOI:10.1016/j.carbon.2018.09.022 (2018)
  2. Silveira, J. F. R. V., Muniz, A. R. Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams Carbon 139, 789-800 (2018)
  3. Chen, M. M., Xiao, J., Cao, C., Zhang, D., Cui, L. L., Xu, X. M., Long, M. Q. Theoretical prediction electronic properties of Group-IV diamond nanothreads Aip Advances 8, 075107 (2018)
  4. Wang, T., Duan, P., Xu, E.-S., Vermilyea, B., Chen, B., Li, X., Badding, J. V., Schmidt-Rohr, K., Crespi, V. H. Constraining Carbon Nanothread Structures by Experimental and Calculated Nuclear Magnetic Resonance Spectra Nano Letters, DOI:10.1021/acs.nanolett.8b01736 (2018).
  5. Zhan, H. F., Gu, Y. T. Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures Chinese Physics B 27, DOI:10.1088/1674-1056/27/3/038103 (2018)
  6. Duan, P., Li, X., Wang, T., Chen, B., Juhl, S. J., Koeplinger, D., Crespi, V. H., Badding, J. V., Schmidt-Rohr, K. The Chemical Structure of Carbon Nanothreads Analyzed by Advanced Solid-State NMR Journal of the American Chemical Society, DOI:10.1021/jacs.8b03733 (2018).
  7. Gao, J., Zhang, G., Yakobson, B. I., Zhang, Y.-W. Kinetic Theory for Formation of Diamond Nanothreads with Desired Configurations: Strain-Temperature Controlled Phase Diagram Nanoscale, (2018)
  8. Li, X., Wang, T., Duan, P., Baldini, M., Huang, H.-T., Chen, B., Juhl, S. J., Koeplinger, D., Crespi, V. H., Schmidt-Rohr, K., Hoffmann, R., Alem, N., Guthrie, M., Zhang, X., Badding, J. V. Carbon Nitride Nanothread Crystals Derived from Pyridine Journal of the American Chemical Society DOI:/10.1021/jacs.7b13247 (2018).
  9. Zhang, L. W., Ji, W. M., Liew, K. M. Mechanical properties of diamond nanothread reinforced polymer composites Carbon 132, 232-240 (2018)
  10. Duan, K., Li, Y., Li, L., Hu, Y., Wang, X. Diamond nanothreads based resonators: ultrahigh sensitivity and low dissipation Nanoscale, (2018)
  11. Marutheeswaran, S., Jemmis, E. D. Adamantane-Derived Carbon Nanothreads: High Structural Stability and Mechanical Strength The Journal of Physical Chemistry C, (2018)
  12. Samuele, F., Margherita, C., Kamil, D., Marcelo Medre, N., Roberto, B. The role of H-bond in the high-pressure chemistry of model molecules Journal of Physics: Condensed Matter, (2018)
  13. Nobrega, M. M., Teixeira-Neto, E., Cairns, A. B., Temperini, M. L. A., Bini, R. One-dimensional diamondoid polyaniline-like nanothreads from compressed crystal aniline Chemical Science 9, 254-260 (2018)
  14. Wu, W., Tai, B., Guan, S., Yang, S. A., Zhang, G. Hybrid Structures and Strain-Tunable Electronic Properties of Carbon Nanothreads The Journal of Physical Chemistry C, (2018)
  15. Chen, B., Wang, T., Crespi, V. H., Li, X., Badding, J., Hoffmann, R. All the Ways To Have Substituted Nanothreads Journal of Chemical Theory and Computation 14, 1131-1140 (2018)
  16. Podlivaev, A.I., Openov, L. A., Effect of hydrogen desorption on the mechanical properties and electron structure of diamond-like carbon nanothreads, Semiconductors, 51 636-639, (2017).
  17. Chen, B., Hoffmann, R, Cammi, R. The Effect of Pressure on Organic Reactions in Fluids—a New Theoretical Perspective, Angewante Chemie, 56, 11126-11142 (2017).
  18. Zhan, H., Gu, Y., Thermal Conductivity of Diamond Nanothread in Thermal Transport in Carbon-Based Nanomaterials, Elsevier (2017).
  19. Feng, C., Xu, J., Zhang, Z., & Wu, J. Morphology- and dehydrogenation-controlled mechanical properties in diamond nanothreads, Carbon, 124, 9–22 (2017).
  20. Li, X., Baldini, M., Wang, T., Chen, B., Xu, E.-S., Vermilyea, B., Crespi, V., Hoffmann, R., Molaison, J., Tulk, C., Guthrie, M., Sinogeikin, S., Badding, J.V., Mechanochemical Synthesis of Carbon Nanothread Single Crystals, JACS, 139, 16343-16349 (2017).
  21. Podlivaev, A. I., Openov, L. A. Thermal stability of hydrogenated small-diameter carbon nanotubes Semiconductors 51, 213-216 (2017)
  22. Zhan, H., Zhang, G., Tan, V.B.C., Gu, Y. The best features of diamond nanothread for nanofibre applications, Nature Comm. 8, 14863 (2017)
  23. Cai, W., Dunuwille, M., He, J., Taylor, T.V., Hinton, J.K., MacLean, M.C., Molaison, J.J., dos Santos, A.M., Sinogeikin, S., Deemyad, S., Deuterium Isotope Effects in Polymerization of Benzene under Pressure, Journal of Physical Chemistry Letters, 8, 1856-1864 (2017)
  24. Saha, B., Pratik, S, Datta, A., Coexistence of Normal and Auxetic Behavior in a Thermally and Chemically Stable sp3 Nanothread: Poly[5]asterane, Chem. Eur. J. 23, 1–8 (2017)
  25. Silveira, J., Muniz, A., Functionalized Diamond Nanothreads from Benzene Derivatives, Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/C6CP08655A.
  26. Juhl, S., Li, X., Badding, J.V., Alem, N., Monochromated Low-Dose Aberration-Corrected Transmission Electron Microscopy of Diamondoid Carbon Nanothreads, Microscopy and Microanalysis, 22, 1840 (2016). 
  27. L. A. Openov, A. I. Podlivaev "Thermal stability of diamond-like carbon nanothreads" JETP Letters 104, 193–196 (2016).
  28. Contreras, M. L., Villarroel, I., Rozas, R. Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubesStructural Chemistry 27, 1479-1490 (2016)
  29. Lasbury M.E. (2017) The Replicator: Maybe You Can Have Everything. In: The Realization of Star Trek Technologies. Springer, Chem (2016.)
  30. J.F.R.V. Silveira, A.R. Muniz"First-principles calculation of the mechanical properties of diamond nanothreads" Carbon 113 260e265 (2017).
  31. T. Zhu, E. Ertekin, "Generalized Debye-Peierls/Allen-Feldman model for the lattice thermal conductivity of low-dimensional and disordered materials" Physical Review B, 93, 155414 (2016). 
  32. T. Zhu, E. Ertekin, "Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene" Nano Letters DOI:10.1021/acs.nanolett.6b00557
  33. H. Zhan, G. Zhang, V.B.C. Tan, Y. Cheng, J.M. Bell, Y.-W. Zhang, & Y. Gu, "From Brittle to Ductile: A Structure Dependent Ductility of Diamond Nanothread". Nanoscale 8 (21), 11177-11184 (2016) http://dx.doi.org/10.1039/C6NR02414A.
  34. H. Zhan, G. Zhang, V.B.C. Tan, Y. Cheng, J.M. Bell, Y.-W. Zhang, & Y. Gu, "Diamond Nanothread as a New Reinforcement for Nanocomposites". Advanced Functional Materials, n/a-n/a (2016) http://dx.doi.org/10.1002/adfm.201600119.
  35. H.F. Zhan, G. Zhang, Y.Y. Zhang, V.B.C. Tan, J.M. Bell, & Y.T. Gu, "Thermal Conductivity of a New Carbon Nanotube Analog: The Diamond Nanothread". Carbon 98, 232-237 (2016) http://dx.doi.org/10.1016/j.carbon.2015.11.012.
  36. H. Zhan, G. Zhang, J.M. Bell, & Y. Gu, "The Morphology and Temperature Dependent Tensile Properties of Diamond Nanothreads". Carbon (2016) http://dx.doi.org/10.1016/j.carbon.2016.06.006.
  37. J.V. Badding & V.H. Crespi, "Synthesizing Carbon Nanothreads from Benzene". SPIE Newsroom, 10.1117/1112.1201501.1005713 (2015) http://dx.doi.org/10.1117/2.1201501.005713.
  38. Contreras, M. L., Villarroel, I., Rozas, R. How structural parameters affect the reactivity of saturated and non-saturated nitrogen-doped single-walled carbon nanotubes of different chiralities: a density functional theory approach Structural Chemistry 26, 761-771 (2015)
  39. B. Chen, R. Hoffmann, N.W. Ashcroft, J. Badding, E.S. Xu, & V. Crespi, "Linearly Polymerized Benzene Arrays as Intermediates, Tracing Pathways to Carbon Nanothreads". J Am Chem Soc 137 (45), 14373-14386 (2015) http://dx.doi.org/10.1021/jacs.5b09053.
  40. T.C. Fitzgibbons, M. Guthrie, E.S. Xu, V.H. Crespi, S.K. Davidowski, G.D. Cody, N. Alem, & J.V. Badding, "Benzene-Derived Carbon Nanothreads". Nat Mater 14 (1), 43-47 (2015) http://dx.doi.org/10.1038/Nmat4088.
  41. R.E. Roman, K. Kwan, & S.W. Cranford, "Mechanical Properties and Defect Sensitivity of Diamond Nanothreads". Nano Lett 15 (3), 1585-1590 (2015) http://dx.doi.org/10.1021/nl5041012.
  42. E.S. Xu, P.E. Lammert, & V.H. Crespi, "Systematic Enumeration of Sp(3) Nanothreads". Nano Lett 15 (8), 5124-5130 (2015) http://dx.doi.org/10.1021/acs.nanolett.5b01343.
  43. B. Maryasin, M. Olbrich, D. Trauner, & C. Ochsenfeld, "Calculated Nuclear Magnetic Resonance Spectra of Polytwistane and Related Hydrocarbon Nanorods". J Chem Theory Comput 11 (3), 1020-1026 (2015) http://dx.doi.org/10.1021/ct5011505.
  44. M. Olbrich, P. Mayer, & D. Trauner, "Synthetic Studies toward Polytwistane Hydrocarbon Nanorods". J Org Chem 80 (4), 2042-2055 (2015) http://dx.doi.org/10.1021/jo502618g.
  45. S.R. Barua, H. Quanz, M. Olbrich, P.R. Schreiner, D. Trauner, & W.D. Allen, "Polytwistane". Chem-Eur J 20 (6), 1638-1645 (2014) http://dx.doi.org/10.1002/chem.201303081.
  46. Contreras, M. L., Cortes-Arriagada, D., Villarroel, I., Alvarez, J., Rozas, R. Evaluating the hydrogen chemisorption and physisorption energies for nitrogen-containing single-walled carbon nanotubes with different chiralities: a density functional theory study Structural Chemistry 25, 1045-1056 (2014)
  47. M. Olbrich, P. Mayer, & D. Trauner, "A Step toward Polytwistane: Synthesis and Characterization of C-2-Symmetric Tritwistane". Org Biomol Chem12 (1), 108-112 (2014) http://dx.doi.org/10.1039/c3ob42152j.
  48. D. Wen, R. Hoffmann, & N.W. Ashcroft, "Benzene under High Pressure: A Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase". J Am Chem Soc 133 (23), 9023-9035 (2011) http://dx.doi.org/10.1021/ja201786y.
  49. Contreras, M. L., Rozas, R. Nitrogen-Containing Carbon Nanotubes - A Theorectical Approach in Carbon Nanotubes - From Research to Applications; Intech, 2011.
  50. Contreras, M. L., Avila, D., Alvarez, J., Rozas, R. Exploring the structural and electronic properties of nitrogen-containing exohydrogenated carbon nanotubes: a quantum chemistry study Structural Chemistry 21, 573-581 (2010)
  51. D. Stojkovic, P.H. Zhang, & V.H. Crespi, "Smallest Nanotube: Breaking the Symmetry of Sp(3) Bonds in Tubular Geometries". Phys. Rev. Lett. 87 (12) (2001) http://dx.doi.org/10.1103/PhysRevLett.87.125502.